Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

C. R. Girija and Noor Shahina Begum*

Department of Studies in Chemistry, Central College Campus, Bangalore University,
Bangalore 560 001, Karnataka, India

Correspondence e-mail: noorsb@rediffmail.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.043$
$w R$ factor $=0.113$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Dimethylamino-3-dimethyliminio-2-(p-methoxyphenyl) prop-1-ene perchlorate

The title compound, $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{ClO}_{4}^{-}$, is an organic nonlinear optical material. It crystallizes in the monoclinic space group $P 2_{1}$ and exhibits second-harmonic generation equivalent to that of urea. The structural study shows extensive electron delocalization in the vinamidinium moiety. The dihedral angle between the vinamidinium moiety and the benzene ring is $81.6(1)^{\circ}$.

Comment

The title compound, (I), is found to be of interest as an organic non-linear optical (NLO) material. The crystals show optical second-harmonic generation (SHG) with the fundamental beam $(\lambda=1064 \mathrm{~nm})$ of a Nd-YAG laser, with an SHG effect equivalent to that of urea. We report here the crystal structure of (I).

Fig. 1 shows the asymmetric unit of (I). The torsion angles about the C 4 (benzene) - C2(propene) bond (Table 1) indicate an almost perpendicular disposition of the aryl ring with respect to the vinamidinium moiety. The amino and imino groups are not clearly distinguishable, as the bond lengths of both groups are of the same order (Table 1). Hence there is extensive electron delocalization.

A short $\mathrm{H} 1 \cdots \mathrm{H} 3$ contact of $1.99 \AA$ is observed in the molecular structure of (I). No classical hydrogen bonds are observed. A view of the molecular packing in the unit cell is shown in Fig. 2. The packing in (I) is stabilized by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2) and van der Waals forces.

Experimental

The title compound was prepared by heating a mixture of dimethylformamide (11 g), $\mathrm{POCl}_{3}(4.6 \mathrm{~g})$ and p-methoxyphenylacetic acid (0.01 mol) for 2 h under constant stirring (Arnold \& Holy, 1967). A solution of 70% aqueous perchloric acid mixed with a small quantity of ethanol was added dropwise, resulting in precipitation of (I). Crystals of (I) suitable for a single-crystal X-ray diffraction study were grown at ambient temperature by slow evaporation of a chloroform solution.

Received 9 January 2004
Accepted 27 February 2004
Online 13 March 2004

Figure 1
A view of the cation and anion of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
A view, down the a axis, of the molecular packing in the unit cell of (I).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}^{+} \cdot \mathrm{ClO}_{4}^{-} \\
& M_{r}=332.79 \\
& \text { Monoclinic, } P 2_{1} \\
& a=7.295(2) \AA \AA \AA^{\circ} \\
& b=13.117(3) \AA \\
& c=8.793(2) \AA \\
& \beta=92.228(5)^{\circ} \AA^{3} \\
& V=840.7(4) \AA^{3} \\
& Z=2
\end{aligned}
$$

$D_{x}=1.315 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 8589
\quad reflections
$\theta=2.3-27.4^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, pale yellow
$0.3 \times 0.2 \times 0.1 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: none
8565 measured reflections
3404 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$\begin{aligned} w= & 1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0634 P)^{2}\right. \\ & +0.0303 P]\end{aligned}$
$+0.0303 P]$
$w R\left(F^{2}\right)=0.113$
$S=1.08$
3404 reflections
204 parameters
H -atom parameters constrained
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}^{\mathrm{max}}{ }_{\mathrm{o}}{ }^{-3}$
$\Delta \rho_{\min }=-0.13 \mathrm{e}^{-3}$
Absolute structure: Flack (1983);
1577 Friedel pairs
Flack parameter $=-0.01(6)$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

N1-C1	$1.307(3)$	$\mathrm{N} 2-\mathrm{C} 13$	$1.462(4)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.462(4)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.406(4)$
$\mathrm{N} 1-\mathrm{C} 10$	$1.467(4)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.383(4)$
$\mathrm{N} 2-\mathrm{C} 3$	$1.317(3)$	$\mathrm{C} 2-\mathrm{C} 4$	$1.496(3)$
$\mathrm{N} 2-\mathrm{C} 12$	$1.456(4)$		
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 11$	$126.2(2)$	$\mathrm{C} 12-\mathrm{N} 2-\mathrm{C} 13$	$114.9(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 10$	$119.2(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$112.1(2)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 10$	$114.3(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4$	$125.3(2)$
C3-N2-C12	$119.4(2)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4$	$122.6(2)$
$\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 13$	$125.7(2)$		
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 5$	$-83.8(3)$	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 9$	$98.9(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 5$	$97.7(3)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 4-\mathrm{C} 9$	$-79.7(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 C \cdots \mathrm{O}^{2}$	0.96	2.46	$3.341(5)$	152

Symmetry code: (i) $1-x, y-\frac{1}{2}, 1-z$.
H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$ and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})$ set to $1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl H atoms and $1.2 U_{\mathrm{eq}}(\mathrm{C})$ for the other H atoms.

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS 97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003).

CRG thanks UGC-FIP for a Teacher Fellowship. The authors thank the Department of Science and Technology, India, for data collection on the CCD facility set up under the IRHPA-DST program.

References

Arnold, Z. \& Holy, A. (1967). Collect. Czech. Chem. Commun. 32, 3792-3794. Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

